Roles of molecules involved in epithelial/mesenchymal transition during angiogenesis.

نویسنده

  • Giulio Ghersi
چکیده

Formation of vessels requires "epithelial-mesenchymal" transition of endothelial cells, with several modifications at the level of endothelial cell plasma membranes. These processes are associated with redistribution of cell-cell and cell-substrate adhesion molecules, cross talk between external ECM and internal cytoskeleton through focal adhesion molecules and the expression of several proteolytic enzymes, including matrix metalloproteases and serine proteases. These enzymes with their degradative action on ECM components, generate molecules acting as activators and/or inhibitors of angiogenesis. The purpose of this review is to provide an overview of the molecules involved in epithelial-mesenchymal transaction, including: the ECM, the cadherins, the integrins, the focal adhesion molecules, and the proteolytic enzymes. The initial clinical trials using physiological, synthetic and immunologic inhibitors against the described molecules for cancer treatment did not show the expected efficacy, in terms of reducing tumor progression. This is due to the fact that these molecules have multiple roles both in angiogenesis and tumor progression. Therefore, developing a strategy against induced angiogenesis requires an overview of all actors which are involved in this phenomenon.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epithelial to mesenchymal transition concept in Cancer: Review article

Owing to this fact that most of the mortalities in cancers are as a result of metastasis, study on the involved pathways in metastasis including Epithelial to mesenchymal transition (EMT) would be so critical and important. Up to date, several extensive studies have been carried out to determine the correlation between EMT and cancer and their results have shown that the EMT plays pivotal role ...

متن کامل

Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition

Notch signaling is an evolutionarily conserved pathway involved in cell fate control during development, stem cell self-renewal, and postnatal tissue differentiation. Roles for Notch in carcinogenesis, the biology of cancer stem cells, tumor angiogenesis, and epithelial-to-mesenchymal transition (EMT) have been reported. This review describes the role of Notch in the "stemness" program in cance...

متن کامل

Analysis of epithelial mesenchymal transition markers in breast cancer cells in response to stromal cell-derived factor 1

Introduction: Metastasis is the main cause of cancer death; however, the underlying mechanisms of metastasis are largely unknown. The chemokine of stromal cell-derived factor 1 (SDF1) and the process of epithelial mesenchymal transition (EMT), both have been declared as important factors to promote cancer metastasis; however, Conspicuously, the relation between them has not been recognized well...

متن کامل

NDRG2 Regulates the Expression of Genes Involved in Epithelial Mesenchymal Transition of Prostate Cancer Cells

Background: Metastasis is the main cause of prostate cancer (PCa) death. The inhibitory effect of N-myc downstream-regulated gene 2 (NDRG2) on the invasiveness properties of PCa cells has been demonstrated previously. However, its underlying mechanisms have not yet been investigated. The present study aimed to investigate the effects of NDRG2 overexpression on the expression of genes involved i...

متن کامل

EMT related lncrnas’ as novel biomarkers in glioblastoma: a review article

Glioma is the most common type of brain tumor and according to the 2016 WHO classification, based on invasion level, it is divided into four categories. The most severe and invasive type is grade IV glioma or glioblastoma (GBM), which has a very poor prognosis and a survival rate of only 15 months. However, the molecular pathway of invasion in malignant glioma tumors has not yet been clearly el...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Frontiers in bioscience : a journal and virtual library

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2008